Joint modeling of recurrent event processes and intermittently observed time-varying binary covariate processes.
نویسنده
چکیده
When conducting recurrent event data analysis, it is common to assume that the covariate processes are observed throughout the follow-up period. In most applications, however, the values of time-varying covariates are only observed periodically rather than continuously. A popular ad-hoc approach is to carry forward the last observed covariate value until it is measured again. This simple approach, however, usually leads to biased estimation. To tackle this problem, we propose to model the covariate effect on the risk of the recurrent events through jointly modeling the recurrent event process and the longitudinal measures. Despite its popularity, estimation of the joint model with binary longitudinal measurements remains a challenge, because the standard linear mixed effects model approach is not appropriate for binary measures. In this paper, we postulate a Markov model for the binary covariate process and a random-effect proportional intensity model for the recurrent event process. We use a Markov chain Monte Carlo algorithm to estimate all the unknown parameters. The performance of the proposed estimator is evaluated via simulations. The methodology is applied to an observational study designed to evaluate the effect of Group A streptococcus on pharyngitis among school children in India.
منابع مشابه
Recurrent event data analysis with intermittently observed time-varying covariates.
Although recurrent event data analysis is a rapidly evolving area of research, rigorous studies on estimation of the effects of intermittently observed time-varying covariates on the risk of recurrent events have been lacking. Existing methods for analyzing recurrent event data usually require that the covariate processes are observed throughout the entire follow-up period. However, covariates ...
متن کاملModeling and Inferential Thoughts for Consecutive Gap Times Observed with Death and Censoring
In the perspective of biomedical applications, consider a re- current event situation with a relatively low degree of recurrence. In this setting, the focus is placed on successive inter-event gap times which are observed in the presence of both a terminal event like death and inde- pendent censoring. The terminal event is potentially related to recurrent events while the censoring process is a...
متن کاملMultivariate Frailty Modeling in Joint Analyzing of Recurrent Events with Terminal Event and its Application in Medical Data
Background and Objectives: In many medical situations, people can experience recurrent events with a terminal event. If the terminal event is considered a censor in this type of data, the assumption of independence in the analysis of survival data may be violated. This study was conducted to investigate joint modeling of frequent events and a final event (death) in breast cancer patients using ...
متن کاملConcepts and Tests for Trend in Recurrent Event Processes
Interest in the presence and nature of trend arises frequently in science, public health, technology, and many other areas. In this ar- ticle we discuss the notion of trend in the context of recurrent event processes. We discuss different frameworks within which one can inves- tigate trend and consider various ways in which trends may be manifest. Tests for trend are discussed in detail and t...
متن کاملA Solution to the Problem of Extrapolation in Car Following Modeling Using an online fuzzy Neural Network
Car following process is time-varying in essence, due to the involvement of human actions. This paper develops an adaptive technique for car following modeling in a traffic flow. The proposed technique includes an online fuzzy neural network (OFNN) which is able to adapt its rule-consequent parameters to the time-varying processes. The proposed OFNN is first trained by an growing binary tree le...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Lifetime data analysis
دوره 22 1 شماره
صفحات -
تاریخ انتشار 2016